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Fig. 8. Average classification error (%) in IBM estimation. (a) The HIT and FA rates, (b) The HIT-FA results.

As we focus on themask estimationwith pitch as prior knowl-
edge, we firstly evaluate the performance when using ideal pitch
extracted from pre-mixed speech. We compare the proposed
method with the previous Bayesian methods [29], [30] in which
mask of each unit is estimated independently. The likelihood
probabilities of reliable and unreliable classes are represented
by GMM, so we call these methods as GMM-based methods.
Segregation results are given in Sections VII-A–VII-D.

A. HIT-FA Results

Motivated by the relationship between speech intelligibility
and errors in IBM estimation [28], we firstly evaluate our system
performance in terms of HIT rate and false alarm (FA) rate.
HIT rate refers to the percentage of the speech-dominated units
correctly labeled as reliable units, and FA rate refers to per-
centage if noise-dominated units wrongly labeled as reliable
units. The average HIT and FA rates are shown in Fig. 8(a).
On average, 71.0% of reliable units are correctly accepted and
16.6% of unreliable units are wrongly accepted by the proposed
method. Overall, our system segregates about 5.0% higher of
reliable units and contains rather fewer unreliable units over the
GMM-based method.
As the difference HIT-FA has shown to be highly correlated

to human speech intelligibility [29], we also give the average
HIT-FA results in Fig. 8(b). Comparing with the GMM-based
method, we can find that our method performs consistently
better under all input SNR conditions, about 5.6% on average.

B. SNR Performance

Since the energies of T-F units are different from T-F unit
to each other, the IBM estimation accuracy couldn’t respond to
the SNR gain directly. We also evaluate the SNR gain of the
segregated speech relative to the signal resynthesized from IBM
as an addition.

(32)

where is the target signal resynthesized from the IBM and
is the segregated target signal.

As in [15], [25], [26], two measures corresponding to HIT
and FA rates are also used to evaluate the performance. That is:

1) The percentage of energy loss, which is defined as
the percentage of target speech excluded from segregated
speech.

2) The percentage of noise residue, which is defined
as the percentage of interference included in segregated
speech.

The and are shown in Fig. 9(a). Our system segre-
gates 96.7% of target energy at 0 dB SNR and 98.7% at 15 dB
SNR. Accordingly, about 23.5% of the intrusion energy belongs
to segregated speech at 0 dB. This ratio drops to 13.8% at 15 dB
SNR. The GMM-based method segregates 94.4% of target en-
ergy at 0 dB SNR and 95.2% at 15 dB SNR. That is, the pro-
posed method may degrade speech energy loss effectively at the
expense of adding amount of noise residue. Although we ob-
tain similar FA rates with the GMM-based method, higher per-
centage of noise residue is obtained by the proposed method,
about 6.6% and 5.3% higher for 0 dB and 5 dB SNR condi-
tions respectively. It is probably because that some unreliable
units with high energy are wrongly revised while some units
with low energy are correctly revised. Take the Fig. 7 as an
example. Almost all of the single units which are wrongly ac-
cepted by the GMM-based method are correctly revised by the
proposed method. However, some unreliable units in rectangles
are wrongly revised. From the definition of in (22) we can
infer that the noise energies distribute in these regions may be
similar with that in the adjacent two voiced segments. Another
worthy of attention is that most of the energy is speech-domi-
nated in high SNR conditions. So, has a greater impact on
the whole SNR performance.
The average SNR results are shown in Fig. 9(b). While the

mixture SNR is 5 dB, we get 0.91 dB SNR improvement over
the GMM-based method. As the mixture SNR increases to
15 dB, the SNR improvement increases to 4.34 dB. On average,
the proposed method is about 1.86 dB better than GMM-based
method.

C. SNR Results With Respect to Different Noises

We choose two typical noises, alarm and cocktail party, for
further examination of performance. As is shown in Fig. 10(a),
the alarm noise is relatively local-stationary and cocktail party
noise varies quickly along time. For the two different noises,
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Fig. 9. Comparisons in terms of SNR performance between the proposed and the GMM-based methods. (a) Average Pnr and Pel results, (b) SNR gain of the
segregated speech.

Fig. 10. Comparisons between two different noises. (a) Cochleagram (b) SNR gain, AL: alarm noise, CP: Cocktail Party noise.

the proposed method outperforms the baseline under most SNR
conditions, as is shown in Fig. 10(b). In addition, similar results
are obtained for the two noises both by the proposed and the
GMM-based methods. The generalizability mainly results from
the use of pitch-related features [33]. It is one main advantage
over traditional speech enhancement methods.

D. Comparisons Using Estimated Pitch

Since part of features for voiced speech is pitch-related, the
inaccuracy in pitch estimation degrades the segregation perfor-
mance directly. However, it is almost impossible to extract ac-
curate pitch from noisy speech signal in practice. So we also
evaluate the performance with the pitch estimated frommixture.
While noise also has harmonic structure (e.g., babble noise), a
sequential grouping stage of pitch contours is necessary which
is still a challenge in CASA. In this evaluation, 2 types of noise
without harmonic structure are selected, including cocktail party
and white noise.
The average results obtained with ideal and estimated pitch

are shown in Fig. 11 respectively. On average, we obtain about
2.0 dB SNR gain. Both of the proposed and GMM-based

Fig. 11. Comparisons in terms of SNR performance between the proposed and
the GMM-based methods. IP: ideal pitch estimated from pre-mixed speech, EP:
pitch estimated from mixture.

methods are degraded by the error in pitch estimation, about
0.95 and 1.1 dB respectively. That is, the proposed method is
slightly more robust to pitch estimation error.
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VIII. DISCUSSION

IBM estimation which is the main goal of CASA can be
viewed as a binary classification problem. Several supervised
classification methods have been used on this problem [25],
[29], [30], [32], [33]. Most of these methods pay much atten-
tion to the feature extraction. On one hand, these features should
exploit the inherent characteristics of the speech signal itself.
On the other hand, to ensure the generalization ability to other
types of noise, the fewer assumptions are given about the in-
terference signal the better is. Since many features for voiced
speech are derived from harmonic structure, the pitch contour
is still the most important clue. Extracting accurate pitch con-
tours from mixtures will improve the IBM estimation greatly.
Many researches focus on pitch estimation, such as [18], [25].
One common characteristic of the previous systems is that the

independence assumption takes place in both feature extraction
and classification stages. From the classification point of view,
one way to improve the classifiers’ performance is designing
more effect features. In this paper, we study this problem from
another angle. The local correlation between the each unit and
its’ neighborhoods is further well studied. This correlation lies
in two aspects: the T-F segmentation and the local noise level.
In fact, several methods have been proposed to model source
spectral patterns, such as HMM based method [45] and fac-
torial-max vector quantization (MAXVQ) based method [47].
Theoretically, these methods have the potential to model any
types of noise if enough corpuses are given for training. The
final trained model can be considered as the distribution of total
signals of each source. But the variety of both interference and
natural speech make them very difficult to model with high ac-
curacy. However, it is much easier to estimate the local noise
level. The proposed prior model of noise energy is just derived
from an assumption about the structural information. On one
hand, this prior model is unsupervised so that the training corpus
is unnecessary. On the other hand, it focuses on depicting the
distribution of the only noise signal within the mixture. Since
the variety is limited greatly, it has higher accuracy in the theory.
The high computational complexity is the main drawback of

the proposed method. The main computational time arises from
autocorrelation calculation in the feature extraction stage. Its
time complexity is , where is the total number of
units and is the number of samples in each unit. In [25],
G. Hu et al. suggest to use parallel computing techniques to
speed up the feature extraction which takes place in each unit
independently. Recently, X.L. Zhang et al. [19] propose a new
scheme in which autocorrelation function is approached by a
constructed cosine function. The period of each cosine func-
tion is derived from the zero crossing rate of that unit. This idea
could also be used to reduce the computation complexity of the
pitch-related features extraction. The slow convergence speed
in MCMC is another factor leads to the high complexity. It is
a difficult problem, yet to be adequately resolved. One possible
way to speed up the convergence is to set the initial sample prop-
erly, such as using approximate maximum likelihood estimation
[42].
In this paper, we focus on the IBM estimation while pitch

is given. In application, the pitch contours is estimated from

mixture. While interference also has harmonic structural or
two-talker segregation task [48], a greater difficulty is to
assign two simultaneous pitches to target and interference
respectively. The wrong pitch match results in the wrongly
reverse of likelihood probability directly. To speech-shaped
interference, two pitch periods may be very close to each other
so that the differences between the features corresponding to
the two pitches become unobvious. Moreover, the local noise
level tracking may be no longer available because of the rapid
changing energy level between adjacent voiced and unvoiced
frames. While ideal pitch organization is given, the likelihood
probability could be slightly modified as in [25] so as to deal
with multiple harmonic sources segregation task. However, the
pitch organization task is still a challenge in CASA and may
be achieved by using speech recognition in a top-down manner
[34] or trained speaker models [8]. Substantial effort is needed
in the future to generalize our method to multiple harmonic
sources segregation task.

IX. CONCLUSION

In this paper, T-F segmentation and the noise level tracking
are used to depict the correlation between adjacent units from
different perspectives. This correlation is incorporated into the
current Bayesian framework via a MCMCmethod. In a local re-
gion, the correlation information from neighborhood could lead
to further improvement for the IBM estimation if most of units
have been labeled accurately. Systematic evaluation shows that
the proposed Bayesian framework performs better than the pre-
vious GMM-based method [29], [30]. Besides, we propose a
new feature, envelope comb filter ratio (ECFR), which is more
effective than original CFR in high frequency channels.
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